Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.169
Filtrar
1.
Chem Biol Drug Des ; 103(4): e14515, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570333

RESUMO

Neurodegenerative disorders are devastating disorders characterized by gradual loss of neurons and cognition or mobility impairment. The common pathological features of these diseases are associated with the accumulation of misfolded or aggregation of proteins. The pivotal roles of autophagy and proteostasis in maintaining cellular health and preventing the accumulation of misfolded proteins, which are associated with neurodegenerative diseases like Huntington's disease (HD), Alzheimer's disease (AD), and Parkinson's disease (PD). This article presents an in-depth examination of the interplay between autophagy and proteostasis, highlighting how these processes cooperatively contribute to cellular homeostasis and prevent pathogenic protein aggregate accumulation. Furthermore, the review emphasises the potential therapeutic implications of targeting autophagy and proteostasis to mitigate neurodegenerative diseases. While advancements in research hold promise for developing novel treatments, the article also addresses the challenges and complexities associated with modulating these intricate cellular pathways. Ultimately, advancing understanding of the underlying mechanism of autophagy and proteostasis in neurodegenerative disorders provides valuable insights into potential therapeutic avenues and future research directions.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Proteostase , Proteínas/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Autofagia
2.
Int J Mol Med ; 53(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577947

RESUMO

Chronic neuroinflammation serves a key role in the onset and progression of neurodegenerative disorders. Mitochondria serve as central regulators of neuroinflammation. In addition to providing energy to cells, mitochondria also participate in the immunoinflammatory response of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, multiple sclerosis and epilepsy, by regulating processes such as cell death and inflammasome activation. Under inflammatory conditions, mitochondrial oxidative stress, epigenetics, mitochondrial dynamics and calcium homeostasis imbalance may serve as underlying regulatory mechanisms for these diseases. Therefore, investigating mechanisms related to mitochondrial dysfunction may result in therapeutic strategies against chronic neuroinflammation and neurodegeneration. The present review summarizes the mechanisms of mitochondria in chronic neuroinflammatory diseases and the current treatment approaches that target mitochondrial dysfunction in these diseases.


Assuntos
Doenças Mitocondriais , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neuroinflamatórias , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doença de Parkinson/metabolismo , Doenças Mitocondriais/metabolismo
3.
J Neurosci Res ; 102(4): e25321, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588013

RESUMO

Neurodegenerative diseases are progressive disorders characterized by synaptic loss and neuronal death. Optogenetics combines optical and genetic methods to control the activity of specific cell types. The efficacy of this approach in neurodegenerative diseases has been investigated in many reviews, however, none of them tackled it systematically. Our study aimed to review systematically the findings of optogenetics and its potential applications in animal models of chronic neurodegenerative diseases and compare it with deep brain stimulation and designer receptors exclusively activated by designer drugs techniques. The search strategy was performed based on the PRISMA guidelines and the risk of bias was assessed following the Systematic Review Centre for Laboratory Animal Experimentation tool. A total of 247 articles were found, of which 53 were suitable for the qualitative analysis. Our data revealed that optogenetic manipulation of distinct neurons in the brain is efficient in rescuing memory impairment, alleviating neuroinflammation, and reducing plaque pathology in Alzheimer's disease. Similarly, this technique shows an advanced understanding of the contribution of various neurons involved in the basal ganglia pathways with Parkinson's disease motor symptoms and pathology. However, the optogenetic application using animal models of Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis was limited. Optogenetics is a promising technique that enhanced our knowledge in the research of neurodegenerative diseases and addressed potential therapeutic solutions for managing these diseases' symptoms and delaying their progression. Nevertheless, advanced investigations should be considered to improve optogenetic tools' efficacy and safety to pave the way for their translatability to the clinic.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Optogenética/métodos , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/tratamento farmacológico , Encéfalo/fisiologia , Gânglios da Base , Doença de Parkinson/genética
4.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612544

RESUMO

N-methyl-d-aspartate receptors (NMDARs) are the main class of ionotropic receptors for the excitatory neurotransmitter glutamate. They play a crucial role in the permeability of Ca2+ ions and excitatory neurotransmission in the brain. Being heteromeric receptors, they are composed of several subunits, including two obligatory GluN1 subunits (eight splice variants) and regulatory GluN2 (GluN2A~D) or GluN3 (GluN3A~B) subunits. Widely distributed in the brain, they regulate other neurotransmission systems and are therefore involved in essential functions such as synaptic transmission, learning and memory, plasticity, and excitotoxicity. The present review will detail the structure, composition, and localization of NMDARs, their role and regulation at the glutamatergic synapse, and their impact on cognitive processes and in neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's disease). The pharmacology of different NMDAR antagonists and their therapeutic potentialities will be presented. In particular, a focus will be given on fluoroethylnormemantine (FENM), an investigational drug with very promising development as a neuroprotective agent in Alzheimer's disease, in complement to its reported efficacy as a tomography radiotracer for NMDARs and an anxiolytic drug in post-traumatic stress disorder.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Receptores de N-Metil-D-Aspartato , Doença de Alzheimer/tratamento farmacológico , Ácido Glutâmico
5.
Biosci Rep ; 44(4)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38577975

RESUMO

Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.


Assuntos
Fármacos Antiobesidade , Neuropeptídeos , Fármacos Neuroprotetores , Obesidade , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Animais , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Neuropeptídeos/uso terapêutico , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/patologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Ingestão de Alimentos/efeitos dos fármacos
6.
Biochem Soc Trans ; 52(2): 693-706, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629629

RESUMO

Pathological breakdown of membrane lipids through excessive lipid peroxidation (LPO) was first described in the mid-20th century and is now recognized as a form of regulated cell death, dubbed ferroptosis. Accumulating evidence unveils how metabolic regulation restrains peroxidation of phospholipids within cellular membranes, thereby impeding ferroptosis execution. Unleashing these metabolic breaks is currently therapeutically explored to sensitize cancers to ferroptosis inducing anti-cancer therapies. Reversely, these natural ferroptotic defense mechanisms can fail resulting in pathological conditions or diseases such as ischemia-reperfusion injury, multi-organ dysfunction, stroke, infarction, or neurodegenerative diseases. This minireview outlines current ferroptosis-inducing anti-cancer strategies and highlights the detection as well as the therapeutic targeting of ferroptosis in preclinical experimental settings. Herein, we also briefly summarize observations related to LPO, iron and redox deregulation in patients that might hint towards ferroptosis as a contributing factor.


Assuntos
Ferroptose , Peroxidação de Lipídeos , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Animais , Ferro/metabolismo , Oxirredução , Antineoplásicos/uso terapêutico , Traumatismo por Reperfusão/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico
7.
Eur J Pharmacol ; 970: 176490, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492876

RESUMO

Neurodegenerative diseases (NDDs) are a collection of incapacitating disorders in which neuroinflammation and neuronal apoptosis are major pathological consequences due to oxidative stress. Neuroinflammation manifests in the impacted cerebral areas as a result of pro-inflammatory cytokines stimulating the Janus Kinase2 (JAK2)/Signal Transducers and Activators of Transcription3 (STAT3) pathway via neuronal cells. The pro-inflammatory cytokines bind to their respective receptor in the neuronal cells and allow activation of JAK2. Activated JAK2 phosphorylates tyrosines on the intracellular domains of the receptor which recruit the STAT3 transcription factor. The neuroinflammation issues are exacerbated by the active JAK2/STAT3 signaling pathway in conjunction with additional transcription factors like nuclear factor kappa B (NF-κB), and the mammalian target of rapamycin (mTOR). Neuronal apoptosis is a natural process made worse by persistent neuroinflammation and immunological responses via caspase-3 activation. The dysregulation of micro-RNA (miR) expression has been observed in the consequences of neuroinflammation and neuronal apoptosis. Neuroinflammation and neuronal apoptosis-associated gene amplification may be caused by dysregulated miR-mediated aberrant phosphorylation of JAK2/STAT3 signaling pathway components. Therefore, JAK2/STAT3 is an attractive therapeutic target for NDDs. Numerous synthetic and natural small molecules as JAK2/STAT3 inhibitors have therapeutic advances against a wide range of diseases, and many are now in human clinical studies. This review explored the interactive role of the JAK2/STAT3 signaling system with key pathological factors during the reinforcement of NDDs. Also, the clinical trial data provides reasoning evidence about the possible use of JAK2/STAT3 inhibitors to abate neuroinflammation and neuronal apoptosis in NDDs.


Assuntos
MicroRNAs , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neuroinflamatórias , Janus Quinase 2/metabolismo , Fatores de Transcrição/metabolismo , Citocinas/metabolismo , MicroRNAs/genética , Fator de Transcrição STAT3/metabolismo , Apoptose/genética
8.
Org Biomol Chem ; 22(14): 2877-2890, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38525805

RESUMO

Oxidative stress and carbonyl stress resulting from the toxicity of small aldehydes are part of the detrimental mechanisms leading to neuronal cell loss involved in the progression of neurodegenerative diseases such as Alzheimer's disease. Polyunsaturated alkylated lipophenols represent a new class of hybrid molecules that combine the health benefits of anti-inflammatory omega-3 fatty acids with the anti-carbonyl and oxidative stress (anti-COS) properties of (poly)phenols in a single pharmacological entity. To investigate the therapeutic potential of quercetin-3-docosahexaenoic acid-7-isopropyl lipophenol in neurodegenerative diseases, three synthetic pathways using chemical or chemo-enzymatic strategies were developed to access milligram or gram scale quantities of this alkyl lipophenol. The protective effect of quercetin-3-DHA-7-iPr against cytotoxic concentrations of acrolein (a carbonyl stressor) was assessed in human SHSY-5Y neuroblastoma cells to underscore its ability to alleviate harmful mechanisms associated with carbonyl stress in the context of neurodegenerative diseases.


Assuntos
Ácidos Graxos Ômega-3 , Doenças Neurodegenerativas , Humanos , Quercetina/farmacologia , Estresse Oxidativo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo
9.
Inflammopharmacology ; 32(2): 917-925, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499742

RESUMO

Parkinson disease (PD) is chronic and progressive neurodegenerative disease of the brain characterized by motor symptoms including tremors, rigidity, postural instability, and bradykinesia. PD neuropathology is due to the progressive degeneration of dopaminergic neurons in the substantia nigra and accumulation of Lewy bodies in the survival neurons. The brain contains a largest amount of cholesterol which is mainly synthesized from astrocytes and glial cells. Cholesterol is intricate in the pathogenesis of PD and may be beneficial or deleterious. Therefore, there are controversial points concerning the role of cholesterol in PD neuropathology. In addition, cholesterol-lowering agents' statins can affect brain cholesterol. Different studies highlighted that statins, via inhibition of brain HMG-CoA, can affect neuronal integrity through suppression of neuronal cholesterol, which regulates synaptic plasticity and neurotransmitter release. Furthermore, statins affect the development and progression of different neurodegenerative diseases in bidirectional ways that could be beneficial or detrimental. Therefore, the objective of the present review was to clarify the double-sward effects of cholesterol and statins on PD neuropathology.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Neurônios Dopaminérgicos , Colesterol
10.
J Med Chem ; 67(7): 5758-5782, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38511649

RESUMO

Eukaryotic translation initiation factor 2B (eIF2B) is a key component of the integrated stress response (ISR), which regulates protein synthesis and stress granule formation in response to cellular insult. Modulation of the ISR has been proposed as a therapeutic strategy for treatment of neurodegenerative diseases such as vanishing white matter (VWM) disease and amyotrophic lateral sclerosis (ALS) based on its ability to improve cellular homeostasis and prevent neuronal degeneration. Herein, we report the small-molecule discovery campaign that identified potent, selective, and CNS-penetrant eIF2B activators using both structure- and ligand-based drug design. These discovery efforts culminated in the identification of DNL343, which demonstrated a desirable preclinical drug profile, including a long half-life and high oral bioavailability across preclinical species. DNL343 was progressed into clinical studies and is currently undergoing evaluation in late-stage clinical trials for ALS.


Assuntos
Esclerose Amiotrófica Lateral , Leucoencefalopatias , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Esclerose Amiotrófica Lateral/tratamento farmacológico , Esclerose Amiotrófica Lateral/metabolismo , Mutação , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/metabolismo , Encéfalo/metabolismo , Leucoencefalopatias/metabolismo
11.
J Med Chem ; 67(7): 5699-5720, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38530425

RESUMO

We report herein the potential of colony-stimulating factor-1 receptor (CSF1R) inhibitors as therapeutic agents in neuroinflammatory diseases, with a focus on Alzheimer's disease (AD). Employing a carefully modified scaffold, N-(4-heterocycloalkyl-2-cycloalkylphenyl)-5-methylisoxazole-3-carboxamide, we identify highly selective and potent CSF1R inhibitors─7dri and 7dsi. Molecular docking studies shed light on the binding modes of these key compounds within the CSF1R binding site. Remarkably, kinome-wide selectivity assessment underscores the impressive specificity of 7dri for CSF-1R. Notably, 7dri emerges as a potent CSF-1R inhibitor with favorable cellular activity and minimal cytotoxicity among the synthesized compounds. Demonstrating efficacy in inhibiting CSF1R phosphorylation in microglial cells and successfully mitigating neuroinflammation in an in vivo LPS-induced model, 7dri establishes itself as a promising antineuroinflammatory agent.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Fator Estimulador de Colônias de Macrófagos , Fosforilação , Simulação de Acoplamento Molecular , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Receptores Proteína Tirosina Quinases/metabolismo
12.
Behav Brain Res ; 465: 114964, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38522596

RESUMO

Histamine, an auto-reactive substance and mediator of inflammation, is synthesized from histidine through the action of histidine decarboxylase (HDC). It primarily acts on histamine receptors in the central nervous system (CNS). Increasing evidence suggests that histamine and its receptors play a crucial role in neuroinflammation, thereby modulating the pathology of neurodegenerative diseases. Recent studies have demonstrated that histamine regulates the phenotypic switching of microglia and astrocytes, inhibits the production of pro-inflammatory cytokines, and alleviates inflammatory responses. In the CNS, our research group has also found that histamine and its receptors are involved in regulating inflammatory responses and play a central role in ameliorating chronic neuroinflammation in neurodegenerative diseases. In this review, we will discuss the role of histamine and its receptors in neuroinflammation associated with neurodegenerative diseases, potentially providing a novel therapeutic target for the treatment of chronic neuroinflammation-related neurodegenerative diseases in clinical settings.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Histamina , Doenças Neuroinflamatórias , Sistema Nervoso Central , Inflamação/tratamento farmacológico , Inflamação/patologia , Microglia/patologia
13.
EBioMedicine ; 102: 105076, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38507876

RESUMO

BACKGROUND: GAA-FGF14 disease/spinocerebellar ataxia 27B is a recently described neurodegenerative disease caused by (GAA)≥250 expansions in the fibroblast growth factor 14 (FGF14) gene, but its phenotypic spectrum, pathogenic threshold, and evidence-based treatability remain to be established. We report on the frequency of FGF14 (GAA)≥250 and (GAA)200-249 expansions in a large cohort of patients with idiopathic downbeat nystagmus (DBN) and their response to 4-aminopyridine. METHODS: Retrospective cohort study of 170 patients with idiopathic DBN, comprising in-depth phenotyping and assessment of 4-aminopyridine treatment response, including re-analysis of placebo-controlled video-oculography treatment response data from a previous randomised double-blind 4-aminopyridine trial. FINDINGS: Frequency of FGF14 (GAA)≥250 expansions was 48% (82/170) in patients with idiopathic DBN. Additional cerebellar ocular motor signs were observed in 100% (82/82) and cerebellar ataxia in 43% (35/82) of patients carrying an FGF14 (GAA)≥250 expansion. FGF14 (GAA)200-249 alleles were enriched in patients with DBN (12%; 20/170) compared to controls (0.87%; 19/2191; OR, 15.20; 95% CI, 7.52-30.80; p < 0.0001). The phenotype of patients carrying a (GAA)200-249 allele closely mirrored that of patients carrying a (GAA)≥250 allele. Patients carrying a (GAA)≥250 or a (GAA)200-249 allele had a significantly greater clinician-reported (80%, 33/41 vs 31%, 5/16; RR, 2.58; 95% CI, 1.23-5.41; Fisher's exact test, p = 0.0011) and self-reported (59%, 32/54 vs 11%, 2/19; RR, 5.63; 95% CI, 1.49-21.27; Fisher's exact test, p = 0.00033) response to 4-aminopyridine treatment compared to patients carrying a (GAA)<200 allele. Placebo-controlled video-oculography data, available for four patients carrying an FGF14 (GAA)≥250 expansion, showed a significant decrease in slow phase velocity of DBN with 4-aminopyridine, but not placebo. INTERPRETATION: This study confirms that FGF14 GAA expansions are a frequent cause of DBN syndromes. It provides preliminary evidence that (GAA)200-249 alleles might be pathogenic. Finally, it provides large real-world and preliminary piloting placebo-controlled evidence for the efficacy of 4-aminopyridine in GAA-FGF14 disease. FUNDING: This work was supported by the Clinician Scientist program "PRECISE.net" funded by the Else Kröner-Fresenius-Stiftung (to CW, AT, and MSy), the grant 779257 "Solve-RD" from the European's Union Horizon 2020 research and innovation program (to MSy), and the grant 01EO 1401 by the German Federal Ministry of Education and Research (BMBF) (to MSt). This work was also supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) N° 441409627, as part of the PROSPAX consortium under the frame of EJP RD, the European Joint Programme on Rare Diseases, under the EJP RD COFUND-EJP N° 825575 (to MSy, BB and-as associated partner-SZ), the NIH National Institute of Neurological Disorders and Stroke (grant 2R01NS072248-11A1 to SZ), the Fondation Groupe Monaco (to BB), and the Montreal General Hospital Foundation (grant PT79418 to BB). The Care4Rare Canada Consortium is funded in part by Genome Canada and the Ontario Genomics Institute (OGI-147 to KMB), the Canadian Institutes of Health Research (CIHR GP1-155867 to KMB), Ontario Research Foundation, Genome Quebec, and the Children's Hospital of Eastern Ontario Foundation. The funders had no role in the conduct of this study.


Assuntos
Fatores de Crescimento de Fibroblastos , Doenças Neurodegenerativas , Nistagmo Patológico , Criança , Humanos , 4-Aminopiridina/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Nistagmo Patológico/induzido quimicamente , Nistagmo Patológico/tratamento farmacológico , Ontário , Estudos Retrospectivos
14.
Neurochem Res ; 49(5): 1387-1405, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38502411

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease, whereby disturbances within the antioxidant defence system, increased aggregation of proteins, and activation of neuronal apoptosis all have a crucial role in the pathogenesis. In this context, exploring the neuroprotective capabilities of compounds that sustain the effectiveness of cellular defence systems in neurodegenerative disorders is worthwhile. During this study, we assessed how 6-hydroxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline (HTHQ), which has antioxidant properties, affects the functioning of the antioxidant system, the activity of NADPH-generating enzymes and chaperones, and the level of apoptotic processes in rats with rotenone-induced PD. Six groups of animals were formed for our experiment, each with 12 animals. These were: a control group, animals with rotenone-induced PD, rats with PD given HTHQ at a dose of 50 mg/kg, rats with PD given HTHQ at a dose of 25 mg/kg, animals with pathology who were administered a comparison drug rasagiline, and control animals who were administered HTHQ at a dose of 50 mg/kg. The study results indicate that administering HTHQ led to a significant decrease in oxidative stress in PD rats. The enhanced redox status in animal tissues was linked with the recovery of antioxidant enzyme activities and NADPH-generating enzyme function, as well as an upsurge in the mRNA expression levels of antioxidant genes and factors Nrf2 and Foxo1. Administering HTHQ to rats with PD normalized the chaperone-like activity and mRNA levels of heat shock protein 70. Rats treated with the compound displayed lower apoptosis intensity when compared to animals with pathology. Therefore, owing to its antioxidant properties, HTHQ demonstrated a beneficial impact on the antioxidant system, resulting in decreased requirements for chaperone activation and the inhibition of apoptosis processes triggered in PD. HTHQ at a dose of 50 mg/kg had a greater impact on the majority of the examined variables compared to rasagiline.


Assuntos
Indanos , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Quinolinas , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Doença de Parkinson/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Rotenona/farmacologia , NADP/metabolismo , Apoptose , Estresse Oxidativo , RNA Mensageiro/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
15.
Chembiochem ; 25(7): e202300819, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441502

RESUMO

Monoacylglycerol lipase (MAGL) plays a crucial role in the degradation of 2-arachidonoylglycerol (2-AG), one of the major endocannabinoids in the brain. Inhibiting MAGL could lead to increased levels of 2-AG, which showed beneficial effects on pain management, anxiety, inflammation, and neuroprotection. In the current study, we report the characterization of an enantiomerically pure (R)-[11C]YH132 as a novel MAGL PET tracer. It demonstrates an improved pharmacokinetic profile compared to its racemate. High in vitro MAGL specificity of (R)-[11C]YH132 was confirmed by autoradiography studies using mouse and rat brain sections. In vivo, (R)-[11C]YH132 displayed a high brain penetration, and high specificity and selectivity toward MAGL by dynamic PET imaging using MAGL knockout and wild-type mice. Pretreatment with a MAGL drug candidate revealed a dose-dependent reduction of (R)-[11C]YH132 accumulation in WT mouse brains. This result validates its utility as a PET probe to assist drug development. Moreover, its potential application in neurodegenerative diseases was explored by in vitro autoradiography using brain sections from animal models of Alzheimer's disease and Parkinson's disease.


Assuntos
Monoacilglicerol Lipases , Doenças Neurodegenerativas , Ratos , Camundongos , Animais , Monoacilglicerol Lipases/metabolismo , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/tratamento farmacológico , Tomografia por Emissão de Pósitrons/métodos , Inflamação , Desenvolvimento de Medicamentos , Inibidores Enzimáticos/farmacologia
16.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474192

RESUMO

The brain is susceptible to oxidative stress, which is associated with various neurological diseases. Edaravone (MCI-186, 3-methyl-1 pheny-2-pyrazolin-5-one), a free radical scavenger, has promising effects by quenching hydroxyl radicals (∙OH) and inhibiting both ∙OH-dependent and ∙OH-independent lipid peroxidation. Edaravone was initially developed in Japan as a neuroprotective agent for acute cerebral infarction and was later applied clinically to treat amyotrophic lateral sclerosis (ALS), a neurodegenerative disease. There is accumulating evidence for the therapeutic effects of edaravone in a wide range of diseases related to oxidative stress, including ischemic stroke, ALS, Alzheimer's disease, and placental ischemia. These neuroprotective effects have expanded the potential applications of edaravone. Data from experimental animal models support its safety for long-term use, implying broader applications in various neurodegenerative diseases. In this review, we explain the unique characteristics of edaravone, summarize recent findings for specific diseases, and discuss its prospects for future therapeutic applications.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Feminino , Gravidez , Esclerose Amiotrófica Lateral/tratamento farmacológico , Antioxidantes/uso terapêutico , Antipirina , Edaravone/farmacologia , Edaravone/uso terapêutico , Sequestradores de Radicais Livres/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Placenta
17.
Expert Opin Drug Discov ; 19(5): 565-585, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38509691

RESUMO

INTRODUCTION: Human neurodevelopmental and neurodegenerative diseases (NDevDs and NDegDs, respectively) encompass a broad spectrum of disorders affecting the nervous system with an increasing incidence. In this context, the nematode C. elegans, has emerged as a benchmark model for biological research, especially in the field of neuroscience. AREAS COVERED: The authors highlight the numerous advantages of this tiny worm as a model for exploring nervous system pathologies and as a platform for drug discovery. There is a particular focus given to describing the existing models of C. elegans for the study of NDevDs and NDegDs. Specifically, the authors underscore their strong applicability in preclinical drug development. Furthermore, they place particular emphasis on detailing the common techniques employed to explore the nervous system in both healthy and diseased states. EXPERT OPINION: Drug discovery constitutes a long and expensive process. The incorporation of invertebrate models, such as C. elegans, stands as an exemplary strategy for mitigating costs and expediting timelines. The utilization of C. elegans as a platform to replicate nervous system pathologies and conduct high-throughput automated assays in the initial phases of drug discovery is pivotal for rendering therapeutic options more attainable and cost-effective.


Assuntos
Caenorhabditis elegans , Modelos Animais de Doenças , Desenvolvimento de Medicamentos , Descoberta de Drogas , Doenças Neurodegenerativas , Caenorhabditis elegans/efeitos dos fármacos , Animais , Humanos , Descoberta de Drogas/métodos , Desenvolvimento de Medicamentos/métodos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Ensaios de Triagem em Larga Escala/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Transtornos do Neurodesenvolvimento/fisiopatologia , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/fisiopatologia
18.
Inflammopharmacology ; 32(2): 1295-1315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512652

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease of the central nervous system that injures the myelin sheath, provoking progressive axonal degeneration and functional impairments. No efficient therapy is available at present to combat such insults, and hence, novel safe and effective alternatives for MS therapy are extremely required. Rutin (RUT) is a flavonoid that exhibits antioxidant, anti-inflammatory, and neuroprotective effects in several brain injuries. The present study evaluated the potential beneficial effects of two doses of RUT in a model of pattern-III lesion of MS, in comparison to the conventional standard drug; dimethyl fumarate (DMF). Demyelination was induced in in male adult C57BL/6 mice by dietary 0.2% (w/w) cuprizone (CPZ) feeding for 6 consecutive weeks. Treated groups received either oral RUT (50 or 100 mg/kg) or DMF (15 mg/kg), along with CPZ feeding, for 6 consecutive weeks. Mice were then tested for behavioral changes, followed by biochemical analyses and histological examinations of the corpus callosum (CC). Results revealed that CPZ caused motor dysfunction, demyelination, and glial activation in demyelinated lesions, as well as significant oxidative stress, and proinflammatory cytokine elevation. Six weeks of RUT treatment significantly improved locomotor activity and motor coordination. Moreover, RUT considerably improved remyelination in the CC of CPZ + RUT-treated mice, as revealed by luxol fast blue staining and transmission electron microscopy. Rutin also significantly attenuated CPZ-induced oxidative stress and inflammation in the CC of tested animals. The effect of RUT100 was obviously more marked than either that of DMF, regarding most of the tested parameters, or even its smaller tested dose. In silico docking revealed that RUT binds tightly within NF-κB at the binding site of the protein-DNA complex, with a good negative score of -6.79 kcal/mol. Also, RUT-Kelch-like ECH-associated protein 1 (Keap1) model clarifies the possible inhibition of Keap1-Nrf2 protein-protein interaction. Findings of the current study provide evidence for the protective effect of RUT in CPZ-induced demyelination and behavioral dysfunction in mice, possibly by modulating NF-κB and Nrf2 signaling pathways. The present study may be one of the first to indicate a pro-remyelinating effect for RUT, which might represent a potential additive benefit in treating MS.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Masculino , Animais , Camundongos , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Cuprizona/efeitos adversos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , NF-kappa B/metabolismo , Rutina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
19.
Scand J Immunol ; 99(2): e13339, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38441214

RESUMO

Microglial cells are indispensable for the normal development and functioning of neurons in the central nervous system, where they play a crucial role in maintaining brain homeostasis by surveilling the microenvironment for signs of injury or stress and responding accordingly. However, in neurodegenerative diseases, the density and phenotypes of microglial cells undergo changes, leading to chronic activation and inflammation. Shifting the focus from neurons to microglia in drug discovery for neurodegenerative diseases has become an important therapeutic target. This study was aimed to investigate the potential of Tacrolimus (FK506) an FDA-approved calcineurin inhibitor, to modulate the pathology of neurodegenerative diseases through anti-inflammatory and antioxidative effects on microglial activation. The human microglia clone 3 (HMC3) cells were exposed to 1 µg/mL LPS in the presence and absence of doses of FK506. Survival rates of cells were determined using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) method. Morphological evaluation of cells showed that FK506 restored the normal morphology of activated microglia. Furthermore, FK506 treatment increases the total antioxidant capacity and reduces the total oxidative capacity, indicating its potential antioxidant effects. Data from ELISA and RT-PCR analyses showed that LPS abolished its promoting effects on the release of proinflammatory IL-1ß and IL-6 cytokines in HMC3 cells, reflecting the anti-inflammatory effect of FK506. These findings support the idea that FK506 could be a promising therapeutic agent for neurodegenerative diseases by modulating microglial activation and reducing inflammation and oxidative stress.


Assuntos
Doenças Neurodegenerativas , Tacrolimo , Humanos , Tacrolimo/farmacologia , Microglia , Antioxidantes/farmacologia , Lipopolissacarídeos/farmacologia , Linhagem Celular , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Células Clonais , Doenças Neurodegenerativas/tratamento farmacológico
20.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397013

RESUMO

Iron overload in many brain regions is a common feature of aging and most neurodegenerative diseases. In this review, the causes, mechanisms, mathematical models, and possible therapies are summarized. Indeed, physiological and pathological conditions can be investigated using compartmental models mimicking iron trafficking across the blood-brain barrier and the Cerebrospinal Fluid-Brain exchange membranes located in the choroid plexus. In silico models can investigate the alteration of iron homeostasis and simulate iron concentration in the brain environment, as well as the effects of intracerebral iron chelation, determining potential doses and timing to recover the physiological state. Novel formulations of non-toxic nanovectors with chelating capacity are already tested in organotypic brain models and could be available to move from in silico to in vivo experiments.


Assuntos
Sobrecarga de Ferro , Doenças Neurodegenerativas , Humanos , Encéfalo , Barreira Hematoencefálica/fisiologia , Ferro , Sobrecarga de Ferro/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA